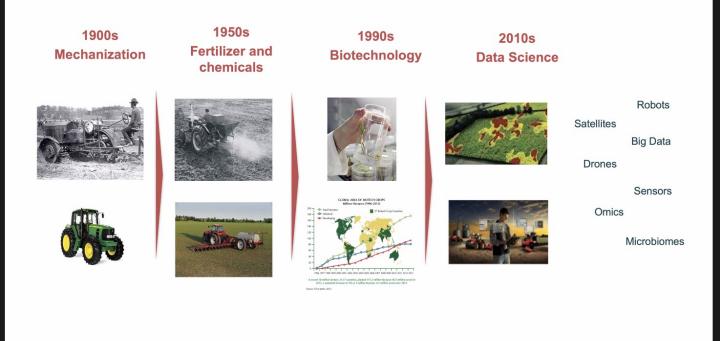

The Future of Cranberry Farming: Harnessing Drone Technology for Precision Agriculture

Research & Extension

North American Cranberry Convection, March 25-26, 2024


Major steps in the agricultural revolution

UMassAmherst

K MICHIGAN STATE UNIVERSITY

(Basso, 2022©)

Drone technology in cranberry production

1. Remote sensing

- Monitor the health and growth of cranberry vines
- Analyzing visual and spectral data obtained from airborne sensors
- The biggest challenge with spectral data is the lack of cranberry-specific indices
- Data collected still needs ground truthing.
- 2. Aerial applications
- Apply inputs with increased precision and site-specific applications, allowing inputs to go further

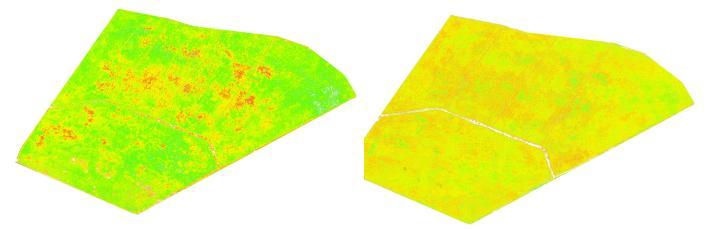
Remote sensing

Type of camera/sensor

- RGB camera (visible range): Monitoring, scouting
- Multispectral: Plant stress, nutrition, diseases, weeds
- > Thermal: Frost, irrigation
- Hyperspectral: Plant stress, nutrition, diseases

RGB cameras

- Collects data within the visible light (400~700nm)
- Scouting and monitoring: insect damage, upright dieback


Multispectral sensors

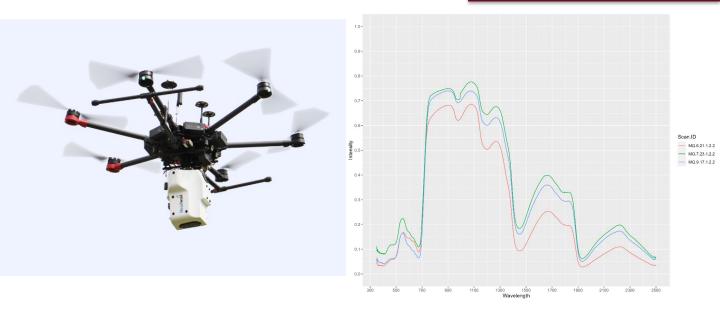
- Collects data within specific wavelengths
- Calculate vegetation indices like NDVI, NDRE, GNDVI

Vegetation indices

- Vegetation indices are spectral calculations of two or more bands of light that highlights vegetative properties
- Useful tool for analyzing trends in plant heat health, stress etc..

Normalized Difference Vegetation Index (NDVI) Normalized Difference Red Edge (NDRE)

Thermal Cameras


UMassAmherst

Applications derived from temperature differences

- Frost monitoring:
- Check frost irrigation efficiency
- Mapping cold spots for siting temp sensors
- Irrigation monitoring
- Evaporative cooling

Hyperspectral

- Hundreds of narrow bands
- Identification and quantification of surface properties, as well as inferring biological and chemical processes

Drone platforms

Integrated:

Mavic 3M, Phantom 4 Pro

UMassAmherst

<u>Multi-purpose:</u>

Matrice 300 RTK, 100

Photogrammetry software

RGB

Blue

UMassAmherst

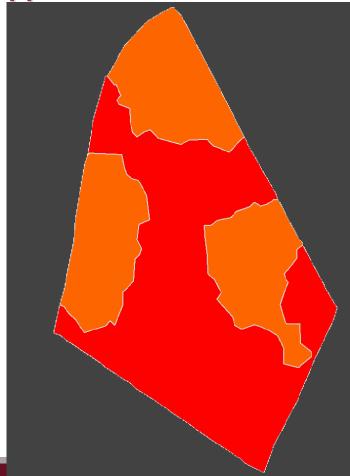
			ROD	Diue	Oreen	Neu	IV Luge	ivea ii	mareu				
	R 110_PPKRA O R 110_Rinex.o	A 110_Timesta mp.MRK	A DJ_0010	△ R DJI_0011	A DJI_0012	▲ R DJI_0013	▲ R DJI_0014	▲ R DJI_0015	▲ R DJI_0020	▲ R DJI_0021			
						1	ST.	E	E	E	E .		
	R DJI_0024	△ A DJI_0030	A DJI_0031	A DJI_0032	A DJI_0033	△ A DJI_0034	A DJL_0035	△ A DJI_0040	△ A DJI_0041	△ A DJI_0042	△ A DJI_0043	110FPLAN (556 items)	
	A DJI_0045		A DJI_0052		△ A DJI_0054		A DIL_0060	A DJ_0061	▲ R DJI_0062	A DJI_0063		Select a single file to g finformation and share cloud content.	
 ○ R DJI_0005 ○ R 	A DJ_0070 G A DJ_0071	▲ R DJI_0072	A DJI_0073	▲ R DJI_0074	▲ R DJI_0075		A DJL0081	△ R DJI_0082		▲ R DJI_0084	▲ R DJI_0085		
© R DJ[_0090	A DJI_0091	A DJI_0093	A DJI_0094		A DJI_0100	▲ R DJI_0101	A DJI_0102	▲ R DJI_0103	A DJI_0104	A DJI_0105	C R DJL0110		
	A DJI_0112	△ 8 DJI_0114	A DJ_0115		A DJ_0121	A DJI_0122	A DJ_0123	© R DJI_0124	A DJI_0125	A DJI_0130	C A DJI_0131		
	A DJI_0133 C A DJI_0134	▲ R DJI_0135		△ R DJI_0141	A DJI_0142	A DJI_0143	A DJI_0144	A DJI_0145		A DJI_0151			

Green Red R/Edge Near Infrared

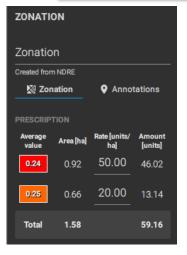
Photogrammetry software

- Software designed to gather crucial farm operational data.
- Ideal software can be used in the field or the office, is accurate,
- Generates agricultural prescription maps, and is easy to export the results.

Application 1: Putnam Scale damage



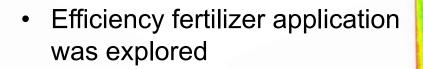
2023 May


September 2022

- 1. Building a database tracking progress over years and effectiveness of treatments
- 2. Set thresholds for triggering action

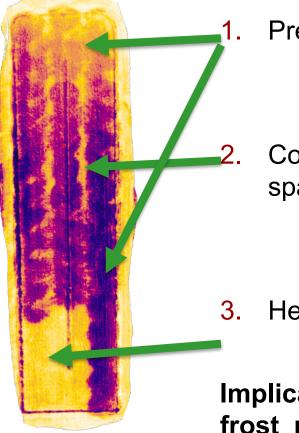
Application 1: Variable rate application

UMassAmherst


 Create a map for variable rate application or spot application

- Orthomosaics from both RGB and multispectral cameras showed the extent of fairy ring damage
- 2. Use NDVI data to develop maps for spot applications

Application 3: Assessing the efficiency of cultural practices


UMassAmherst

 Based on both visible and NDVI images, the rotary spreader fertilizer application on this particular bog was shown to be uneven

Application 3: Irrigation monitoring

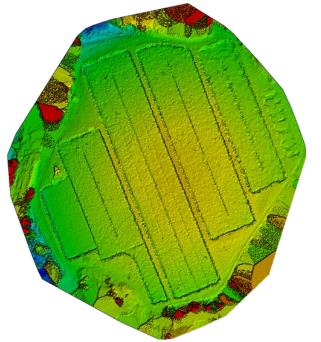
UMassAmherst

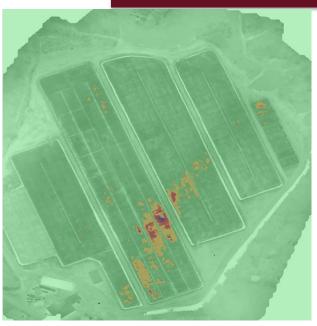
Pressure is uneven

Coverage is not uniform, dry spaces between rows.

3. Heads are blocked

Implications for chemigation, frost protection, productivity


Application 4: Improving placement of temperate sensors



- Long-wave infrared (thermal) imaging
- Mapping cold spots on a multiple cranberry bog system that is controlled by one frost temperature sensor.

Application 4: Thermal imaging

UMassAmherst

Digital elevation model (left) and thermal image orthomosaic (right) in greyscale of a cranberry bog system. The dark spots on the thermal image represent the coldest spots

Aerial Applications

UMassAmherst

Granular Payload

Liquid Payload

Leading Edge Aerial Technologie ©

Granular Fertilizers

Liquid fertilizers, Pesticides (aerial label)

Advantages:

- RTK precision
- Variable rate applications
- > Spot applications

Aerial applications

UMassAmherst

2023: Observational study in conjunction with a grower collaborator

- 104 acres of fertilizer
- 100 acres herbicides

Drone Preflight Checklist

Ryan Wicks, University of Masschusetts Amherst Giverson Mupambi, University of Massachusetts - Amherst Follow Follow

Publication Date

2023

UMassAmherst

Cranberry Station

Ryan Wicks¹ and Giverson Mupambi²

¹UMassAir, University of Massachusetts Amherst, Amherst, MA, USA ²UMass Cranberry Station, University of Massachusetts Amherst, East Wareham, MA, USA Version 2: September 2023 Permissions and legality, flight plan review, weather conditions, systems checks, launch preparations, and post-flight actions.

UMassAmherst

https://scholarworks.umass.edu/cranberry_factsheets/52/

Acknowledgments

- CCCGA for funding the pilot study
- Ryan Wicks
- Staff and faculty at Cranberry Station

UMassAmherst.

Email: gmupambi@umass.edu Phone: (508) 970-7638